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1. Introduction

Significant research into developing advanced wavefront control techniques has recently been

done in the field of Adaptive Optics (AO). Future AO systems have ambitious performance

goals which will require advances beyond current wavefront control techniques. In particular,

an advanced wavefront controller can help reduce the servo-lag (residual atmosphere) error

which scatters light close in near the point-spread-function (PSF) core. This new research

includes work by Kulcsár et al. [1] and Looze [2] in applying established control systems

theory and techniques to the AO scenario. Experimental work has been done by Petit et

al. [3] on using Kalman filtering for vibration reduction and by Hinnen et al. [4] in using

H2-optimal control.

In our own recent work we have proposed a computationally feasible and adaptive pre-

dictive controller. This method is termed Predictive Fourier Control (PFC) [5] and it builds

upon the closed-loop AO control with Kalman filtering framework which was developed by

Le Roux et al. [6]. In PFC the wavefront is reconstructed in the Fourier basis set [7]. Under
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the assumption of frozen flow atmospheric turbulence, the Fourier modes are nearly uncor-

related both spatially and temporally. This allows each complex-valued Fourier mode to be

controlled independently. Closed-loop AO telemetry of the residual phase is recorded and

analyzed using a temporal power spectral density (PSD) technique. This allows easy iden-

tification of atmospheric layers, which have a highly compact temporal PSD under frozen

flow. State space model parameters are directly estimated from closed-loop telemetry and

are then used to solve the Algebraic Riccati Equation (ARE), producing the steady-state

Kalman filter which predicts the atmosphere.

The state-space model of Le Roux et al. is a discrete-time approximation to the hybrid

continuous/discrete-time AO control system. This standard model (as described in [8]) is

shown in Fig. 1. In this model the continuous phase aberration φ(t) is corrected in closed-

loop, with discrete measurement noise v[t]. The wavefront sensor (WFS) integration and

deformable mirror (DM) shaping are done on intervals of length T , producing a frame rate

fao = 1/T . The total computational latency of the AO system, from the end of the WFS

CCD integration to the end of the write to the deformable mirror (DM), is given by τ .

If τ = T , the AO system can be described with the discrete-time model of Le Roux et al.

Kulcsár has shown that when τ is an integer multiple of T , and when the discrete-time phase

is the average of the continuous atmospheric phase over that interval of length T , this state

space model results in the optimal control algorithm [1]. If τ is a different integer multiple

of T , the state space model of Le Roux can be easily modified to capture that delay.

It may not always be the case, however, that τ is an integer multiple of T . For example,

in the preliminary design phase of the Gemini Planet Imager (GPI) [9], the system’s WFS

integration time is T = 500 μs and the delay is τ = 737 μs. Since by its very nature a

predictive controller is intimately dependent on the total system delay, it is necessary to

determine what the predictive controller will be when the delay τ is a non-integer multiple

of T . Furthermore, the models which we use to do Monte Carlo simulations of AO system

are discrete-time, and therefore cannot simulate fractional delays.

In this paper we present a new modified state space model for the AO measurement

and control for arbitrary compute delays. We address the range 0 ≤ τ ≤ 2T , though the

treatment is easily extensible to longer delays, if necessary. This model allows derivation

of a form of PFC for arbitrary system delays. We do not present a theoretical result (á la

Kulcsár) which proves that this answer is in fact the minimum variance controller for non-

integer delays. Instead, we present theory and simulation results which show the graceful

behavior of variable-delay PFC between integer time step delays. The simulations are done

with Simulink to specifically address the hybrid model.
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2. State space model

2.A. Modeling the asynchronous DM

The discrete-time state space model mentioned above is valid when the computational delay

τ is an integer multiple of T . When the delay is non-integer, however, the DM takes a new

shape asynchronously with the rest of the system. We have chosen to address this by treating

the discrete-time signals as if they are constant over an interval of length T , and using linear

combinations of them. Looze [2] used a method termed lifting to construct a higher order

state space model. We do not follow that approach but instead have pragmatically modified

the existing model.

The asynchronicity and how we model it is illustrated in Fig. 2. At the top is the discrete-

time version, where the WFS measurement y[t] is related to the atmospheric phase φ[t] and

the DM commands d[t]. In the τ = T case of Le Roux (which PFC uses) the measurement is

delayed by one time step as y[t] = φ[t− 1]− d[t− 1]. Using the Kalman filter result, the new

DM command d[t+1] is the best estimate of the phase based on the WFS measurements up

to time t as d[t + 1] = φ̂[t + 1|t].
In our new model we assume that all the signals are constant over an interval, instead of

existing at discrete points. This is shown in the second row. The exact same equations hold

for τ = T . When the compute delay τ is less than T , the DM signals are applied earlier,

which causes the DM signals to shift to the left by a fractional amount Δ = τ/T − 1, as is

shown in the third row. The WFS measurement y[t] still sees the phase φ[t − 1], but it now

observes two different shapes on the DM. It sees d[t− 1] for the first fraction of the interval,

and d[t] for the second. Written out using Δ, the measurement now is modeled as

y[t] = φ[t − 1] − {−Δd[t] + (1 + Δ)d[t − 1]} . (1)

This simply is a linear combination of the two DM signals, with the weighting dependent

on the delay. The second consequence of the asynchronicity is that the new DM command

d[t + 1] spans two phase instances. Following the approach above, the new DM command is

a linear combination of the phase estimates

d[t + 1] = −Δφ̂[t|t] + (1 + Δ)φ̂[t + 1|t]. (2)

When the computational delay is longer than one step, the DM signal is shifted to the

right, as is shown in the fourth row of the figure. Now the measurement is

y[t] = φ[t − 1] − {(1 − Δ)d[t − 1] + Δd[t − 2]} , (3)

and the DM command is

d[t + 1] = (1 − Δ)φ̂[t + 1|t] + Δφ̂[t + 2|t]. (4)

3



In this model we treat all signals as being constant over the interval, with the DM write

asynchronous with the WFS read. This is the correct behavior for the DM, which is held

constant. However, this is an approximation in the case of the atmospheric phase, which

actually varies continuously. How much this approximation reduces the optimality of this

model is left for future theoretical work.

These new measurement equations (1) and (3) will be incorporated into the state space

model. The new DM command equations (2) and (4) will be used in solving the model for

the predictive filter.

2.B. State space model for Fourier control

Modal Fourier reconstruction analyzes the wavefront in the complex-valued Fourier modal

basis set. For a given pupil size D and subaperture size d, there are D/d subapertures

across the pupil. The phase is reconstructed on an N × N grid. N is usually a few larger

than D/d, and chosen for a computationally efficient discrete Fourier transform (DFT),

e.g. FFTW [10]. For example, in GPI D/d = 44 and N = 48. The Fourier modes, when

calculated with the DFT, are indexed by frequency variable k and l, take the values

−N/2,−(N/2− 1), · · · ,−1, 0, 1, · · · , (N/2− 2), (N/2− 1). This gives each Fourier mode the

frequency components, in units of m−1, fx = k/(Nd) and fy = l/(Nd).

The model of the input atmosphere is the same as in the original PFC derivation, where

we assume frozen flow of layers of atmospheric phase aberration. When controlling Fourier

modes, each turbulent layer becomes a first-order auto-regressive process. A complex-valued

AR(1) process has the basic form

a[t] = αa[t − 1] + w[t]. (5)

The complex number α has magnitude just less than one. The phase of α sets how much the

Fourier mode advances in a single time step. This is simply 2πT times the dot product of

the velocity vector of the layer with the frequency vector of that Fourier mode: −2πT (kvx +

lvy)/(Nd).

We assume that the atmosphere is composed of a static layer where α is a real number

just less than one, and L layers of frozen flow. The state variables for these layer components

are given by

a = (a0, a1, · · · , aL) (6)

and the auto-regression parameters are stored in the matrix

R = Diag(α0, α1, · · · , αL). (7)

The state space model requires the power levels of each of the driving noises, which set the

amount of phase power in each layer. These are given by the covariance matrix

Pw = Diag(σ2
a0

, σ2
a1

, · · · , σ2
aL

). (8)
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In addition to the atmospheric layers, the state vector contains the phase φ and the DM

command d at various instances in time. To capture the range of possible delays 0 ≤ τ ≤ 2T ,

we need 4 phase variables and 3 DM variables, making the state vector

x[t] = (a[t], φ[t + 2], φ[t + 1], φ[t], φ[t − 1], d[t], d[t− 1], d[t− 2])T . (9)

The evolution of this state vector is governed by the equation x[t + 1] = Ax[t] + Gd[t +

1] + Bw[t]. Note that the original PFC derivation used the term Gd[t] instead of Gd[t + 1],

but this is a mathematical convenience which will not affect the results. The state transition

matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R 01×(L+1) 01×(L+1) 01×(L+1) 01×(L+1) 01×(L+1) 01×(L+1) 01×(L+1)

1(L+1)×1 0 0 0 0 0 0 0

0(L+1)×1 1 0 0 0 0 0 0

0(L+1)×1 0 1 0 0 0 0 0

0(L+1)×1 0 0 1 0 0 0 0

0(L+1)×1 0 0 0 0 0 0 0

0(L+1)×1 0 0 0 0 1 0 0

0(L+1)×1 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(10)

The matrix G governs the incorporation of the most recent DM command (the output of

the predictive filter) into the state.

G = (0(L+1)×1, 0, 0, 0, 0, 1, 0, 0)T . (11)

Finally, the driving noises are incorporated with

B =

⎛
⎝ I(L+1)×(L+1)

0(L+1)×7

⎞
⎠ . (12)

There are now two key differences from the original PFC derivation. Up to this point every-

thing is the same as in the original model, though extra states have been added. Now the

equations (1) and (3) are incorporated into the state space model measurement equation.

y[t] = Cx[t]+v[t]. Here v[t] is the measurement noise and has variance Pv = (σ2
v). For τ ≤ T

the matrix is

Cτ≤T = (0(L+1)×1, 0, 0, 0, 1, Δ,−(1 + Δ), 0). (13)

In the longer delay case we have

CT≤τ = (0(L+1)×1, 0, 0, 0, 1, 0,−(1− Δ),−Δ). (14)

The second set of new equations from Section 2.A will be used in the process of solving for

the predictive filter.
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3. Predictive filter with arbitrary delay

Given this state space model described by the two equations x[t + 1] = Ax[t] + Gd[t + 1] +

Bw[t] and y[t] = Cx[t] + v[t], we solve as originally for the temporal filter. Recall that the

temporal filter is C(z), as shown in Fig. 1.

Many AO systems use an integral controller, such as C(z) = g/(1 − 0.99z−1). In the

technique of modal gain optimization, which was developed by Gendron and Léna [11], the

gain g is optimized. This method, done in closed-loop with Fourier modes, forms the GPI

baseline control algorithm of Optimized-gain Fourier Control [7]. For PFC we will use AO

telemetry to find the best C(z), where the form of the predictor is given by the Kalman

filter.

This derivation is done in two steps. First, the estimation equation, which uses the steady-

state Kalman gain vector Ks,

x̂[t|t] = (I − KsC)Ax̂[t − 1|t − 1] + (I − KsC)Gd[t] + Ksy[t] (15)

is solved with the Z-transform to determine the transfer function C(z) between the measure-

ment y[t] and the new DM command d[t + 1]. This control law will be a function of Ks,

which is in turn a function of the entries of the steady-state error covariance matrix Ps:

Ks = PsC
H(CPsC

H + Pv)
−1. (16)

This matrix is found by numerically solving the Algebraic Riccati Equation (ARE):

Ps = APsA
H + BPwBH −APsC

H(CPsC
H + Pv)

−1CPsA
H. (17)

The matrix Ps is indexed by column then row indices, e.g., p1,0 is the second element in the

top-most row-vector.

3.A. Solution for delays shorter than one frame

First we solve the set of equations produced by Eq. (15). For this we will use Z-tranform

notation with the complex number z, and uppercase letters indicating the Z-transform of

time series, e.g. A0(z) for a0[t]. For clarity of notation we will also use dummy variables

for the state vector elements. For this case we will need 3 for the phases: l[t] = φ̂[t + 2],

m[t] = φ̂[t + 1] and n[t] = φ̂[t].

In order to solve for the control law C(z), we need to express its output d[t + 1] in terms

of state variables. This is exactly what we did in (2). In Z-transform notation the predictive

controller is

C(z) = −Δ
N(z)

Y (z)
+ (1 + Δ)

M(z)

Y (z)
. (18)
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To solve this system of equations we use two helper terms, which are expressed as, dropping

the z arguments for compactness,

S = −Nz−1(1 + Δ[(1 + Δ)z−1 − Δ]) + Mz−1(1 + Δ)[(1 + Δ)z−1 − Δ] + Y, (19)

and Q = pL+4,L+4 + σ2
v . The state space model produces L + 4 equations. Each layer ai has

an equation

Aiz
3 = Aiαiz

2 + Q−1SpL+4,i. (20)

Three of the phase state variables provide the equations

L = z2
L∑

i=0

Ai + Q−1SpL+4,L+1, (21)

M = Lz−1 + Q−1SpL+4,L+2, (22)

and

N = Mz−1 + Q−1SpL+4,L+3. (23)

These equations can be simplified with the help of special properties of the entries of Ps for

our model. For m = 1, 2, 3 and 4,

pL+4,L+m =
L∑

i=0

pL+4,i

αm
i

. (24)

We omit the extensive algebra necessary to solve these equations and present the resulting

control law which converts the measurement y[t] to the best DM command:

C(z) =

(
Q−1

L∑
i=0

pL+4,i

α2
i

1

1 − αiz−1

[
(1 + Δ) − Δ

αi

])
× (25)

⎛
⎝1 + z−1Q−1(1 + Δ)

L∑
i=0

pL+4,i

α2
i

[
Δ +

1 − Δ

αi

] ⎡
⎣1 − (1+Δ)αi−Δ

Δαi+1−Δ
z−1

1 − αiz−1

⎤
⎦
⎞
⎠

−1

. (26)

The final term in the equation, which is the ratio of two first-order filters, can be approxi-

mated as 1 when the angles of the αi’s are small. Given this approximation, the control law

simplifies to

C(z) =

(
Q−1

L∑
i=0

pL+4,i

α2
i

1

1 − αiz−1

[
(1 + Δ) − Δ

αi

])
× (27)

(
1 + z−1Q−1(1 + Δ)

L∑
i=0

pL+4,i

α2
i

[
Δ +

1 − Δ

αi

])−1

. (28)

This assumption that the angles of the αi’s are small is a reasonable one for PFC. Given

a 20 m/s wind, the highest temporal frequency seen by PFC is around 80 Hz, or just 8%

of Nyquist for GPI’s 2 kHz AO. This makes the angle of α 0.25 radians, which qualifies as

small. This assumption does not hold in all cases. Kalman filtering, as shown by Petit et

al. [3], can correct for vibration at half the Nyquist frequency. In that case the angle of α is

π/2 radians. In such a case the above approximation cannot be made.
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3.B. Solution for delays longer than a frame

For delays T ≤ τ , we use (4) to express the control law

C(z) = (1 − Δ)
M(z)

Y (z)
+ Δ

L(z)

Y (z)
. (29)

The equations (20) - (23) are exactly the same as before, except S now equals

S = −Nz−1 + [M(1 − Δ) + LΔ]z−2[(1 − Δ) + Δz−1] + Y. (30)

Again, the algebra is omitted. The end result is the control law which converts the measure-

ment y[t] to the best DM command:

C(z) =

[
Q−1

L∑
i=0

pL+4,i

αi

1

1 − αiz−1

(
Δ +

1 − Δ

αi

)]
× (31)

[
1 + z−1Q−1

L∑
i=0

pL+4,i

α3
i

+ z−2Q−1Δ(2 − Δ)
L∑

i=0

pL+4,i

α2
i

(32)

−z−2Q−1Δ(1 − Δ)
L∑

i=0

pL+4,i

αi

1 − [2 − α−1
i ]z−1

1 − αiz−1

]−1

. (33)

As before, the final term, which is a ratio of first-order filters, can be approximated as 1 for

most cases, producing

C(z) =

[
Q−1

L∑
i=0

pL+4,i

αi

1

1 − αiz−1

(
Δ +

1 − Δ

αi

)]
× (34)

[
1 + z−1Q−1

L∑
i=0

pL+4,i

α3
i

+ z−2Q−1Δ
L∑

i=0

pL+4,i

αi

(
2 − Δ

αi

− (1 − Δ)
)]−1

. (35)

3.C. General form and implementation

These two forms of the predictive controller, (27) and (34), appear to be fairly complex

algebraic expressions. However, they share the same simple underlying structure, which is

illustrated in the block diagram of Fig. 3. Just as in the original PFC derivation, the predictive

filter is made up of two parts: parallel first-order filters which predict each layer, and a

stabilizing high-pass filter.

First the residual measurement y[t] is fed through a first-order filter which we term a

layer-compensating integrator. The gain on the integral controller is given by Ki. From (27)

and (34) this gain is

Ki =

⎧⎨
⎩

Q−1pL+4,iα
−2
i

[
(1 + Δ) − Δα−1

i

]
if −1 ≤ Δ ≤ 0,

Q−1pL+4,iα
−1
i

[
Δ + (1 − Δ)α−1

i

]
if 0 ≤ Δ ≤ 1.

(36)

This gain predicts the WFS measurement by the proper amount for that specific layer, and

provides a scaling based on relative strengths of the layers.
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The high-pass filter (which is a lead filter) is usually either first or second order. The two

coefficients D1 and D2 are given by

D1 =

⎧⎨
⎩

Q−1(1 + Δ)
∑L

i=0 pL+4,iα
−2
i

[
Δ + (1 − Δ)α−1

i

]
if −1 ≤ Δ ≤ 0,

Q−1∑L
i=0 pL+4,iα

−3
i if 0 ≤ Δ ≤ 1,

(37)

and

D2 =

⎧⎨
⎩

0 if −1 ≤ Δ ≤ 0,

Q−1Δ
∑L

i=0 pL+4,iα
−1
i

[
(2 − Δ)α−1

i − (1 − Δ)
]

if 0 ≤ Δ ≤ 1.
(38)

This consistency in structure makes the predictor easy to implement in a system with variable

computational delays. The structure is the same while the exact filter coefficients change

with delay. Each filter coefficient Ki, D1 or D2 can depend on both Δ and the entries of the

steady-state error covariance matrix Ps.

However, Ps does not depend on Δ. This is clear based on an examination of the ARE

(17). The DM commands in the state vector are known, because the matrix G incorporates

d[t] into the state vector, where it is passed along. This means that the last three rows and

columns of Ps must be zero, since the variance of a known quantity is zero. When either

Cτ≤T or CT≤τ is used in the ARE, all the entries which contain Δ are multiplied by zeroes

in Ps. Hence the value of Δ does not affect Ps. This means that the ARE can be solved

independently from knowledge of the exact delay τ .

Particular filter forms and the implications of these conclusions will be discussed further

in the specific example of a single layer.

3.D. Exploring the predictor for one layer

Let’s look at the controller for the case of one layer for five different possible values or ranges

of τ . For this case we assume that the atmosphere is composed of a single layer of frozen

flow and that no static errors exist. The complex-valued parameter α encodes the phase

change with one time step. Multiplication by α is equivalent to predicting by one time step.

In the case of a single layer, the coefficients of the predictive filter can be parameterized by

a real-valued gain g which ranges from 0 to 1,

g =
pL+4,L+4

pL+4,L+4 + σ2
v

= Q−1pL+4,L+4. (39)

This gain g is a function of the SNR.

Given g, we can simplify the equations for the filter coefficients. We focus on (36), which
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is the gain of the layer integrator,

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

gα if Δ = −1,

−Δgα + (1 + Δ)gα2 if −1 ≤ Δ ≤ 0,

gα2 if Δ = 0,

(1 − Δ)gα2 + Δgα3 if 0 ≤ Δ ≤ 1,

gα3 if Δ = 1.

(40)

In the case of integer delays, the coefficient K is a gain (based on the SNR) and a prediction

by the appropriate number of time steps. For example, if the τ = T case there is a delay

of 2 whole steps between the WFS integration interval and the interval where the new DM

commands are applied. Multiplication by α2 predicts by two steps. When the delay is a

non-integer multiple of T , the coefficient K does a linear approximation with the nearest

whole delays. This linear approximation is a good one, particularly when the angle of α is

small, which we assume it is.

So the layer-integrator coefficient K has two functions - it scales the residual input by a

gain g based on the SNR, then it predicts the measurement by the correct fractional number

of steps between WFS and DM. The previous DM command is always predicted by one time

step, as would be expected.

In our model for arbitrary delays (see Fig. 2) we assumed that the WFS measurements and

best DM commands involved a linear combination of the overlapping intervals. The end result

is a predictor which deals with non-integer delays by doing the same linear interpolation of

the control for whole-integer delays.

4. Controller modeling and analysis

In this study we use two complementary methods to analyze the qualities and performance

of the predictor controller. Both of these methods begin with the hybrid continuous/discrete-

time model of Fig. 1.

4.A. Laplace transform equations

As is explained by Madec [8], the hybrid system can be modeled with the Laplace transform

for the continuous elements, and a mapping of discrete z to continuous s for the control

law. The WFS integrates over one interval from t to t + T . This can be represented as the

difference of the integral from 0 to t + T and the integral from 0 to t, which in Laplace

notation is W (s) = [1 − exp(−sT )]/(sT ). The DM is a zero-order hold, where a shape is

placed on the mirror and help for one time step. This zero-order hold is not linear-time-

invariant, and as such is approximately modeled with the same transfer function as the

WFS, D(s) = [1 − exp(−sT )]/(sT ). The DM transfer function which describes its temporal

behavior is assumed to be 1, since most DMs have first resonances well above our frame rate.
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The computational delay is simply exp(−sτ). To include both the continuous and discrete

transfer functions, the substitution z = exp(sT ) is made. Using this method, analytic trans-

fer functions which describe system performance are easily determined. The error transfer

function, which describes the system response from atmospheric input φ(t) to residual error

ε(t) is

He(f) =
1

1 + W (s)C(z = exp(sT )) exp(−sτ)D(s)
. (41)

The noise transfer function from WFS noise v[t] to ε(t) is

Hn(f) =
−C(z = exp(sT )) exp(−sτ)D(s)

1 + W (s)C(z = exp(sT )) exp(−sτ)D(s)
. (42)

These transfer functions can be used to find the margins of the system or to estimate per-

formance given known PSDs for the atmosphere and noise.

4.B. Simulink model

The elements of the AO control loop are implemented in Simulink. The Simulink model is

shown in Fig. 4. Our model is similar to that in [2]. Because Simulink blocks vary in their

ability to handle complex numbers, junctions are used to switch back and forth from a single

complex-valued signal and two real-valued signals (real and imaginary parts) as appropriate.

The WFS block is implemented exactly as given by the function W (s) above. The servo lag

of the system exp(−sτ) is moved up (with no loss of model accuracy) into the WFS module

to ensure correct continuous-time implementation of the delay. The WFS module gain block

handles the sampling conversion from continuous to discrete, after which the WFS noise is

added. The residual as measured by the WFS is fed through either the integral controller or

the PFC Kalman filter. The switch port provides the choice of which controller to use. The

DM is implemented with a Simulink zero-order hold block, as opposed to the approximate

Laplace model given above.

The simulation begins with the phase aberration input at datainReal and datainImag.

This input signal is generated following the model used for the Kalman filter; see (5) - (8).

This input is sampled at 100 times fao to minimize the necessary interpolation. The Simulink

model saves two signals at 10 times fao: the input phase as simin and the residual error as

simout. Oversampling from the frame rate is necessary to prevent aliasing errors in signal

analysis. The baseline AO run is 16384 AO steps, or roughly 8 seconds.

These output signals are analyzed to produce estimates of the temporal PSDs and of the

transfer functions of the system. The performance metric is the total power (variance) of

the residual error ε(t). This can be computed directly in the time domain from the variance

of simout, or in the frequency domain through integration of the PSD estimate. This PSD

estimate is done with the averaged, modified periodogram technique [12].
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The transfer functions of the system can also be determined from the simulation outputs.

To measure |He(f)|2, the input signal φ(t) is band-limited white noise and the WFS noise

level is set to zero. Then simin is used to estimate the input PSD P̂φ(f) and simout is used

to estimate the residual error PSD P̂ε(f). The error transfer function is then

ˆ|He(f)|2 =
P̂ε(f)

P̂φ(f)
. (43)

Likewise this can be done for the noise transfer function by having zero atmospheric input

and white noise on the WFS.

4.C. Comparing the two techniques

The error transfer functions for an L = 3 predictive controller with τ = 1.5T , as determined

by theory and by Simulink, are shown in Fig. 5. The noise transfer functions are shown in

Fig. 6. The theoretical form and the Simulink form do have slight differences, particularly

at higher temporal frequencies. This is to be expected, because the DM transfer function

used in the Laplace method is only an approximation to the actual behavior of the zero-

order hold block in Simulink. When integrated over the frequency domain from f = −fao/2

to f = fao/2, the actual discrepancy is quite small - the integral of the Laplace transfer

function is within < 1% of the Simulink result.

The result that there is little difference between the Laplace model and the Simulink model

does not agree with the recent conclusion of Looze [2]. This could be due to the fact that

we consistently use the variable substitution z = exp(sT ) for all z terms in the controllers,

whereas Looze uses a mix of this transform and the bilinear transform.

4.D. Stability

Though the AO control system is modeled in Simulink, the transport delay in the WFS poses

significant problems when it comes to linearizing and discretizing the model for analysis of

margins in Matlab. Given this, and the good agreement of the Laplace transfer functions

with the Simulink model, we instead evaluate the stability margins directly by numerical

analysis of the Laplace transfer functions.

Just as with the original PFC, the control law C(z) itself is assured to be stable by the

model structure of the Kalman filter. As long as the magnitudes of the αi’s are all less

than one, the Kalman filter is stable. To analyze the gain and phase margins, we examine

W (s)C(z = exp(sT )) exp(−sτ)D(s) using standard techniques [13]. The baseline stability

requirements are that the phase margin is at least 45 degrees and the gain margin is at least

2. For the controllers with which we deal here, if one of these requirements is met, the other

is as well.
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Fig. 7 gives the phase margins for the case of a high SNR, where the controllers will be

most aggressive in pushing the system margins. In fact, for most delays the optimal-gain

controller is limited to the maximum gain which produces a phase margin of 45 degrees. The

predictor, however, has larger margins. For the non-integer step delays, the phase margins

follow a near linear interpolation between τ = 0, τ = T and τ = 2T . This example illustrates

one advantage of the predictor over the integral controller: at high SNRs the predictor does

not run into the same limitation on gain set by stability, which allows it to provide much

better correction. This will be covered in more detail below. For lower SNRs the phase

margins are larger for both controllers.

5. Results

5.A. Methods and cases examined

For performance analysis we have picked a specific case which is reasonable given GPI pa-

rameters. In this case L = 3. For i = 0 to L, |αi| = 0.99. The layer temporal frequencies are

−40, 13 and 63 Hz. (As noted above, given a 20 m/s wind, a GPI Fourier mode will see layer

frequencies up to 80 Hz). The distribution of driving white noise power is σ2
a0

= 3, σ2
a1

= 2,

σ2
a2

= 0.5 and σ2
a3

= 1. Given this distribution, the total power in φ[t] is normalized to be

1. Then the noise power level is set by fixing the SNR, which is defined as the ratio of the

standard deviations σφ/σv. The frame rate is fao = 2000 Hz, which makes T = 500 μs. The

controller delay τ can be varied from 125 μs to 2000 μs, in increments of 125 μs, or T/4.

The predictive controller was determined by using the above model parameters and nu-

merically solving the ARE (as described in detail in [5]). For comparison to the predictor,

an integral controller was used and its gain was optimized, as is the baseline GPI strategy of

Optimized-gain Fourier Control (OFC) [7]. In the OFC proposal, the power on the measure-

ments (given by y[t] in Fig. 1) is minimized, and a Z-transform description of the system is

used. For this new arbitrary control loop delay formulation, the Laplace transfer functions

will be used. A second discrepancy from the proposal is that the assumption that allowed

the measurements y[t] to be minimized as a proxy to the residual error ε(t) [14] appears to

be no longer valid. This assumption was based on the fact that the new WFS noise seen by

the measurements is uncorrelated with the residual error. This can also be viewed as the

assumption that
∫

Py(f) − Pε(f) df is not a function of g. In the fractional delay case this

does not hold for our model. This has implications for actual implementation of OFC with

arbitrary delays, as it may require that the signal and noise PSDs be separated out of the

joint estimate.

Given this, we directly minimize the residual error through the known power spectra

of the input and noise and the transfer functions. This minimization of Pφ(f)|He(f)|2 +

Pv(f)|Hn(f)|2, where the transfer functions were given in (41) and (42), produces the gain
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g. For any given τ , a maximum gain limit is determined such that the phase margin is 45

degrees at this gain. For example, when τ = 1.5T , the maximum gain is 0.406. Because

we find little discrepancy between the Laplace model and the Simulink model, the gains as

optimized by Laplace produce the best performance in Simulink.

5.B. Performance

The simulations to study performance of the predictor with variable delays was conducted in

Simulink, as described above. The performance metric is the power (variance) of the residual

error. This quantity was calculated over the 8 seconds of operation for a variety of SNRs and

delays. The residual error powers for low and high SNRs are shown in Fig. 8. The Simulink

results are given by dots; the theoretical predictions based on the Laplace model are given

with lines. There is very good agreement between the two, which should be expected since

there are only small differences between the models. The predictor behaves in a graceful

fashion for non-integer delays: the residual error essentially follows a linear interpolation of

the performance at whole time steps.

A second important result is that the predictor improves its advantage over the integrator

as delays increase. At SNR = 10, the predictor has 20% less residual error at the shortest

delay and 55% less error at the longest delay. The predictor here has the same performance

at τ = 2T as the optimized integrator at τ = T , which mean that for this specific input the

predictor enables an extra delay of 500 μs. At SNR = 1, the predictor starts out with 30%

less error, which is increased to 40% less error at the longest delay. At SNR = 1 the predictor

at all delays had less error than the integral controller at the shortest delay for this input

atmosphere.

Some of this advantage comes from the fact that as the delay increases, the predictor has

an adjustable lead filter, the coefficients of which are given in (37) and (38). As the delay

increases, a lead filter appears and then becomes higher order, providing the best adjustment

for each delay. In contrast, the integral controller form is fixed for all delays.

The other part of this advantage is due to the fact that the predictor can selectively correct

specific temporal frequencies. Each layer which is in the model results in a notch in the error

transfer function, leading to improved rejection of that component. The depth of the notch

is partly a function of the power in the layer. In this manner, the predictor can selectively

attenuate the input, while still limiting noise amplification. In contrast, the gain-optimized

integrator must adjust its rejection simultaneously at all temporal frequencies.

6. Conclusion

We have modified the discrete-time state-space model of a hybrid continuous/discrete-time

AO control system to deal with arbitrary control loop delays. This modification is used to
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generate a new general formula for Predictive Fourier Control. The fundamental structure

of the predictive control law is independent of the exact system delay, resulting is ease of

implementation. Furthermore, the fundamental coefficients (such as the SNR-based gain for

each layer) are independent of the delay. Only the amount of prediction and the specific

structure of the stabilizing lead filter depend on the the delay τ .

The new PFC controller is essentially a linear interpolation of the controllers at integer-

time step delays. Consequently, system stability and performance transition gracefully be-

tween these whole-step delays. Performance analysis with a complete Simulink model of the

hybrid system has confirmed the efficacy of the Laplace transform model, as well as provid-

ing performance results. As the computational delay τ increases, PFC provides more of an

advantage over a gain-optimized integral controller. This is because it can selectively correct

specific temporal frequency bands and does not have the same strong limitations due to

stability.
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with adaptive prediction of the atmosphere,” J. Opt. Soc. Am. A 24, 2645–2660 (2007).

15



6. B. Le Roux, J.-M. Conan, C. Kulcsar, H.-F. Raynaud, L. M. Mugnier, and T. Fusco,

“Optimal control law for classical and multiconjugate adaptive optics,” J. Opt. Soc. Am.

A 21, 1261–1276 (2004).
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List of Figure Captions

Fig. 1 Block diagram of hybrid continuous/discrete-time AO control loop for a single Fourier

mode. The phase aberration φ(t) is corrected in closed-loop in the presence of measurement

noise v[t]. The WFS dynamics are represented by W (s), the DM dynamics by D(s) and the

controller delay by exp(−sτ). The discrete-time control law is C(z).

Fig. 2 Comparison of discrete-time state space model for delay τ = T (row 1) to the new

model, which assumes the signals are constant over an the interval of the sampling period

(row 2). When τ ≤ T , the DM signal shifts to the left and becomes asynchronous (row 3).

When T ≤ τ , the DM signal shifts to the right (row 4).

Fig. 3 Flow diagram illustrating implementation of predictive filter for 0 ≤ τ ≤ 2T . The

coefficients used in the filter depend on Δ, and are taken from Eq (27) or Eq (34). Note that

when τ ≤ T , D2 = 0.

Fig. 4 Simulink model of the hybrid continuous/discrete-time AO control loop for a complex-

valued Fourier modal coefficient. The WFS module implements the standard transfer func-

tion W (s), while the DM module is a Simulink zero-order hold block. The integral controller

and Kalman filters are implemented with discrete-time blocks of gains and delays. (The

Kalman block is implemented exactly as in Fig. 3). A switch allows use of either controller.

Fig. 5 Error transfer function for a predictive controller with τ = 1.5T , based on Laplace

transform model or as determined by running white noise through Simulink model. There

are some small discrepancies, due to the modeling of the DM.

Fig. 6 Noise transfer function for a predictive controller with τ = 1.5T , based on Laplace

transform model or as determined by running white noise through Simulink model. There

are some small discrepancies, due to the modeling of the DM.

Fig. 7 Phase margins for a high-SNR case for the optimized gain integrator and the predictor.

For most delays τ the optimal gain is limited to be the maximum gain set by stability. The

predictor can be more aggressive and has larger margins for all τ .

Fig. 8 Residual error from Simulink simulation, for predictor and optimized-gain integrator,

for SNRs of 1 and 10. Simulink results are given with data points, Laplace model results are

given as lines.
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